Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 90(3): e0099023, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38315021

RESUMO

Many female squids and cuttlefishes have a symbiotic reproductive organ called the accessory nidamental gland (ANG) that hosts a bacterial consortium involved with egg defense against pathogens and fouling organisms. While the ANG is found in multiple cephalopod families, little is known about the global microbial diversity of these ANG bacterial symbionts. We used 16S rRNA gene community analysis to characterize the ANG microbiome from different cephalopod species and assess the relationship between host and symbiont phylogenies. The ANG microbiome of 11 species of cephalopods from four families (superorder: Decapodiformes) that span seven geographic locations was characterized. Bacteria of class Alphaproteobacteria, Gammaproteobacteria, and Flavobacteriia were found in all species, yet analysis of amplicon sequence variants by multiple distance metrics revealed a significant difference between ANG microbiomes of cephalopod families (weighted/unweighted UniFrac, Bray-Curtis, P = 0.001). Despite being collected from widely disparate geographic locations, members of the family Sepiolidae (bobtail squid) shared many bacterial taxa including (~50%) Opitutae (Verrucomicrobia) and Ruegeria (Alphaproteobacteria) species. Furthermore, we tested for phylosymbiosis and found a positive correlation between host phylogenetic distance and bacterial community dissimilarity (Mantel test r = 0.7). These data suggest that closely related sepiolids select for distinct symbionts from similar bacterial taxa. Overall, the ANGs of different cephalopod species harbor distinct microbiomes and thus offer a diverse symbiont community to explore antimicrobial activity and other functional roles in host fitness.IMPORTANCEMany aquatic organisms recruit microbial symbionts from the environment that provide a variety of functions, including defense from pathogens. Some female cephalopods (squids, bobtail squids, and cuttlefish) have a reproductive organ called the accessory nidamental gland (ANG) that contains a bacterial consortium that protects eggs from pathogens. Despite the wide distribution of these cephalopods, whether they share similar microbiomes is unknown. Here, we studied the microbial diversity of the ANG in 11 species of cephalopods distributed over a broad geographic range and representing 15-120 million years of host divergence. The ANG microbiomes shared some bacterial taxa, but each cephalopod species had unique symbiotic members. Additionally, analysis of host-symbiont phylogenies suggests that the evolutionary histories of the partners have been important in shaping the ANG microbiome. This study advances our knowledge of cephalopod-bacteria relationships and provides a foundation to explore defensive symbionts in other systems.


Assuntos
Cefalópodes , Microbiota , Humanos , Animais , Feminino , Cefalópodes/genética , Filogenia , RNA Ribossômico 16S/genética , Decapodiformes/microbiologia , Genitália/microbiologia , Bactérias/genética , Simbiose
2.
J Invertebr Pathol ; 201: 107993, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37751834

RESUMO

Histopathology associated with the apicomplexan Aggregata valdessensis in the wild population of Octopus tehuelchus was studied. Moreover, to analyze the impact of the prevalence and infection intensity on the dorsal mantle length, sex, maturity stages, condition index and total hemocyte counts on wild O. tehuelchus, Generalized Linear Models (GLMs) were applied. Kruskal-Wallis (KW) test was used to compare growth parameter (RNA/DNA ratios) in infected and uninfected octopuses. Lesions including hypertrophy of host cells and destruction of the tissue organ architecture as well as the replacement of host tissue by parasites were associated with infection. The infection caused an inflammatory defensive response in form of hemocytic infiltration.. The prevalence of apicomplexan increased with octopus dorsal mantle length (GLM, t = 2.68; p = 0.007). Infection intensity was significantly higher in male octopus (GLM, t = 2.69; p = 0.009) and decreased at higher temperatures in both sexes (GLM, t = -2.42; p = 0.018). The digestive gland condition index did not significantly vary with infection intensity, and no significant relationship between total hemocyte counts and coccidian infection was found (Lineal Model, t = 0.46; p = 0.64). The acid nucleic ratio was significantly lower in octopuses infected by A. valdessensis (Kruskal Wallis test, H = 4.8; p = 0.02), suggesting a detrimental effect on O. tehuelchus growth caused by the coccidian.


Assuntos
Octopodiformes , Feminino , Masculino , Animais , Interações Hospedeiro-Parasita , Oceano Atlântico
3.
Sci Rep ; 13(1): 15492, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726311

RESUMO

Few other invertebrates captivate our attention as cephalopods do. Octopods, cuttlefish, and squids amaze with their behavior and sophisticated body plans that belong to the most intriguing among mollusks. Little is, however, known about their body plan formation and the role of Hox genes. The latter homeobox genes pattern the anterior-posterior body axis and have only been studied in a single decapod species so far. Here, we study developmental Hox and ParaHox gene expression in Octopus vulgaris. Hox genes are expressed in a near-to-staggered fashion, among others in homologous organs of cephalopods such as the stellate ganglia, the arms, or funnel. As in other mollusks Hox1 is expressed in the nascent octopod shell rudiment. While ParaHox genes are expressed in an evolutionarily conserved fashion, Hox genes are also expressed in some body regions that are considered homologous among mollusks such as the cephalopod arms and funnel with the molluscan foot. We argue that cephalopod Hox genes are recruited to a lesser extent into the formation of non-related organ systems than previously thought and emphasize that despite all morphological innovations molecular data still reveal the ancestral molluscan heritage of cephalopods.


Assuntos
Genes Homeobox , Octopodiformes , Animais , Genes Homeobox/genética , Decapodiformes , Octopodiformes/genética , , Extremidade Inferior
4.
Integr Comp Biol ; 63(6): 1226-1239, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-37370232

RESUMO

Few animal groups can claim the level of wonder that cephalopods instill in the minds of researchers and the general public. Much of cephalopod biology, however, remains unexplored: the largest invertebrate brain, difficult husbandry conditions, and complex (meta-)genomes, among many other things, have hindered progress in addressing key questions. However, recent technological advancements in sequencing, imaging, and genetic manipulation have opened new avenues for exploring the biology of these extraordinary animals. The cephalopod molecular biology community is thus experiencing a large influx of researchers, emerging from different fields, accelerating the pace of research in this clade. In the first post-pandemic event at the Cephalopod International Advisory Council (CIAC) conference in April 2022, over 40 participants from all over the world met and discussed key challenges and perspectives for current cephalopod molecular biology and evolution. Our particular focus was on the fields of comparative and regulatory genomics, gene manipulation, single-cell transcriptomics, metagenomics, and microbial interactions. This article is a result of this joint effort, summarizing the latest insights from these emerging fields, their bottlenecks, and potential solutions. The article highlights the interdisciplinary nature of the cephalopod-omics community and provides an emphasis on continuous consolidation of efforts and collaboration in this rapidly evolving field.


Assuntos
Cefalópodes , Animais , Genômica/métodos , Genoma , Perfilação da Expressão Gênica , Encéfalo
5.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37108304

RESUMO

The common octopus is a cephalopod species subject to active fisheries, with great potential in the aquaculture and food industry, and which serves as a model species for biomedical and behavioral studies. The analysis of the skin mucus allows us to study their health in a non-invasive way, by using a hardly exploited discard of octopus in the fishing sector. A shotgun proteomics approach combined with liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) using an Orbitrap-Elite instrument was used to create a reference dataset from octopus skin mucus. The final proteome compilation was investigated by integrated in-silico studies, including Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, network studies, and prediction and characterization analysis of potential bioactive peptides. This work presents the first proteomic analysis of the common octopus skin mucus proteome. This library was created by merging 5937 identified spectra of 2038 different peptides. A total of 510 non-redundant proteins were identified. Obtained results show proteins closely related to the defense, which highlight the role of skin mucus as the first barrier of defense and the interaction with the environment. Finally, the potential of the bioactive peptides with antimicrobial properties, and their possible application in biomedicine, pharmaceutical, and nutraceutical industry was addressed.


Assuntos
Octopodiformes , Proteogenômica , Animais , Proteômica/métodos , Proteoma/metabolismo , Octopodiformes/química , Octopodiformes/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Peptídeos/metabolismo , Muco/metabolismo
6.
Mar Drugs ; 21(4)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37103345

RESUMO

The common octopus (Octopus vulgaris) is nowadays the most demanded cephalopod species for human consumption. This species was also postulated for aquaculture diversification to supply its increasing demand in the market worldwide, which only relies on continuously declining field captures. In addition, they serve as model species for biomedical and behavioral studies. Body parts of marine species are usually removed before reaching the final consumer as by-products in order to improve preservation, reduce shipping weight, and increase product quality. These by-products have recently attracted increasing attention due to the discovery of several relevant bioactive compounds. Particularly, the common octopus ink has been described as having antimicrobial and antioxidant properties, among others. In this study, the advanced proteomics discipline was applied to generate a common octopus reference proteome to screen potential bioactive peptides from fishing discards and by-products such as ink. A shotgun proteomics approach by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) using an Orbitrap Elite instrument was used to create a reference dataset from octopus ink. A total of 1432 different peptides belonging to 361 non-redundant annotated proteins were identified. The final proteome compilation was investigated by integrated in silico studies, including gene ontology (GO) term enrichment, pathways, and network studies. Different immune functioning proteins involved in the innate immune system, such as ferritin, catalase, proteasome, Cu/Zn superoxide dismutase, calreticulin, disulfide isomerase, heat shock protein, etc., were found in ink protein networks. Additionally, the potential of bioactive peptides from octopus ink was addressed. These bioactive peptides can exert beneficial health properties such as antimicrobial, antioxidant, antihypertensive, and antitumoral properties and are therefore considered lead compounds for developing pharmacological, functional foods or nutraceuticals.


Assuntos
Octopodiformes , Proteoma , Animais , Humanos , Proteoma/metabolismo , Proteômica/métodos , Octopodiformes/química , Cromatografia Líquida , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Tinta , Espectrometria de Massas em Tandem , Peptídeos/química
7.
Sci Data ; 9(1): 609, 2022 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209315

RESUMO

Cephalopods have been considered enigmatic animals that have attracted the attention of scientists from different areas of expertise. However, there are still many questions to elucidate the way of life of these invertebrates. The aim of this study is to construct a reference transcriptome in Octopus vulgaris early life stages to enrich existing databases and provide a new dataset that can be reused by other researchers in the field. For that, samples from different developmental stages were combined including embryos, newly-hatched paralarvae, and paralarvae of 10, 20 and 40 days post-hatching. Additionally, different dietary and rearing conditions and pathogenic infections were tested. At least three biological replicates were analysed per condition and submitted to RNA-seq analysis. All sequencing reads from experimental conditions were combined in a single dataset to generate a reference transcriptome assembly that was functionally annotated. The number of reads aligned to this reference was counted to estimate the transcript abundance in each sample. This dataset compiled a complete reference for future transcriptomic studies in O. vulgaris.


Assuntos
Octopodiformes , Transcriptoma , Animais , Octopodiformes/genética , RNA-Seq
8.
Eur J Protistol ; 81: 125825, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34333451

RESUMO

The Apicomplexa Aggregata spp. are intracellular parasites of cephalopods that infect the intestinal tract of commercially important species such as Octopus bimaculatus, which sustains the octopus fishery in Baja California (B.C.), Mexico. In this study, Aggregata polibraxiona n. sp. was described from the cecum of O. bimaculatus collected from Bahia de Los Angeles, B. C. Light and electron microscopy revealed that oocysts and sporocysts were spherical to ovoid in shape. Sporulated oocysts (293-835 × 177-688 µm) contained 135-674 sporocysts (12-24 × 11-22 µm). The sporocyst wall was covered by tubular projections (0.55-2.19 µm in length) bifurcated in the top, unevenly distributed, covered by a thin membrane. Each sporocyst contains 11-13 sporozoites (16-26 × 1.20-3 µm). Three partial sequences of the 18S rDNA gene were obtained, and two phylogenetic approaches were performed according to Bayesian inference and Maximum Likelihood. In both phylogenetic reconstructions, the sequences of A. polibraxiona n. sp. were recovered as a monophyletic group within the genus Aggregata and placed as a sister group to Aggregata octopiana Lineage II. Aggregata polibraxiona n. sp. is the first Apicomplexa described from a cephalopod host from Mexico and extends the geographical range of Apicomplexa infecting cephalopods.


Assuntos
Apicomplexa , Octopodiformes , Animais , Apicomplexa/genética , Teorema de Bayes , México , Filogenia
9.
Mar Environ Res ; 168: 105315, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33853012

RESUMO

Vitellogenin (Vtg), a large multidomain protein precursor of egg-yolk proteins, is used as an endocrine disruption biomarker in fish, and in the last decades, its use has been extended to invertebrates like mollusks. However, it remains unclear whether invertebrate endocrine system produces Vtg in response to estrogens, like it occurs in oviparous vertebrates. In a previous study, no evidence of induction of Vtg expression at protein level was found in gonads of the marine mussel Mytilus galloprovincialis after exposure to the estrogenic chemical 17α-ethinylestradiol (EE2). In the present follow-up study, it was investigated whether there is any effect of EE2 on Vtg abundance at transcriptional level in M. galloprovincialis gonads. To this aim, RT-qPCR analysis targeting three different domains of Vtg transcript was performed on gonads of mussels that were exposed either 4 or 24 days to 100 ng/L EE2. In addition, several reference genes were analysed and a selection of these for potential use in further RT-qPCR analyses on mussel male and female gonads is provided. Results showed higher expression in females than in males for the three analysed Vtg domains, and no evidence of Vtg mRNA induction due to EE2 either in females or males. The present results, together with those obtained from previous analysis at protein level, support that Vtg is not an adequate biomarker for xenoestrogenicity in marine mussels. Additionally, nucleotide sequences of Vtg transcripts of three closely-related species from Mytilus edulis complex (M. galloprovincialis, M. edulis and M. trossulus) are provided and compared with Vtg sequences from other mollusk species to assess the level of conservation and evolutionary relationships among species.


Assuntos
Mytilus , Poluentes Químicos da Água , Animais , Etinilestradiol/toxicidade , Feminino , Seguimentos , Expressão Gênica , Masculino , Mytilus/genética , Vitelogeninas/genética , Poluentes Químicos da Água/toxicidade
10.
Genome Biol Evol ; 13(2)2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33566096

RESUMO

The phylum Apicomplexa consists largely of obligate animal parasites that include the causative agents of human diseases such as malaria. Apicomplexans have also emerged as models to study the evolution of nonphotosynthetic plastids, as they contain a relict chloroplast known as the apicoplast. The apicoplast offers important clues into how apicomplexan parasites evolved from free-living ancestors and can provide insights into reductive organelle evolution. Here, we sequenced the transcriptomes and apicoplast genomes of three deep-branching apicomplexans, Margolisiella islandica, Aggregata octopiana, and Merocystis kathae. Phylogenomic analyses show that these taxa, together with Rhytidocystis, form a new lineage of apicomplexans that is sister to the Coccidia and Hematozoa (the lineages including most medically significant taxa). Members of this clade retain plastid genomes and the canonical apicomplexan plastid metabolism. However, the apicoplast genomes of Margolisiella and Rhytidocystis are the most reduced of any apicoplast, are extremely GC-poor, and have even lost genes for the canonical plastidial RNA polymerase. This new lineage of apicomplexans, for which we propose the class Marosporida class nov., occupies a key intermediate position in the apicomplexan phylogeny, and adds a new complexity to the models of stepwise reductive evolution of genome structure and organelle function in these parasites.


Assuntos
Apicomplexa/classificação , Apicomplexa/genética , Apicoplastos/genética , Tamanho do Genoma , Animais , Vias Biossintéticas/genética , Coccídios/genética , RNA Polimerases Dirigidas por DNA/genética , Eimeriidae/genética , Evolução Molecular , Invertebrados/parasitologia , Filogenia , Proteínas de Protozoários/classificação , Transcrição Gênica
11.
J Invertebr Pathol ; 183: 107553, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33596434

RESUMO

The ostreid herpes virus (OsHV-1), associated with massive mortalities in the bivalve Crassostrea gigas, was detected for the first time in the cephalopod Octopus vulgaris. Wild adult animals from a natural breeding area in Spain showed an overall prevalence of detection of 87.5% between 2010 and 2015 suggesting an environmental source of viral material uptake. Overall positive PCR detections were significantly higher in adult animals (p = 0.031) compared to newly hatched paralarvae (62%). Prevalence in embryos reached 65%. Sequencing of positive amplicons revealed a match with the variant OsHV-1 µVar showing the genomic features that distinguish this variant in the ORF4. Gill tissues from adult animals were also processed for in situ hybridization and revealed positive labelling. Experimental exposure trials in octopus paralarvae were carried out by cohabitation with virus injected oysters and by immersion in viral suspension observing a significant decrease in paralarval survival in both experiments. An increase in the number of OsHV-1 positive animals was detected in dead paralarvae after cohabitation with virus injected oysters. No signs of viral replication were observed based on lack of viral gene expression or visualization of viral structures by transmission electron microscopy. The octopus response against OsHV-1 was evaluated by gene expression of previously reported transcripts involved in immune response in C. gigas suggesting that immune defences in octopus are also activated after exposure to OsHV-1.


Assuntos
Vírus de DNA/isolamento & purificação , Octopodiformes/virologia , Animais , Sequência de Bases , Genoma Viral , Larva/crescimento & desenvolvimento , Larva/virologia , Octopodiformes/crescimento & desenvolvimento , Alinhamento de Sequência
12.
Parasit Vectors ; 11(1): 63, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29370873

RESUMO

BACKGROUND: The Apicomplexa from aquatic environments are understudied relative to their terrestrial counterparts, and the seminal work assessing the phylogenetic relations of fish-infecting lineages is mostly based on freshwater hosts. The taxonomic uncertainty of some apicomplexan groups, such as the coccidia, is high and many genera were recently shown to be paraphyletic, questioning the value of strict morphological and ecological traits for parasite classification. Here, we surveyed the genetic diversity of the Apicomplexa in several commercially valuable vertebrates from the North-East Atlantic, including farmed fish. RESULTS: Most of the sequences retrieved were closely related to common fish coccidia of Eimeria, Goussia and Calyptospora. However, some lineages from the shark Scyliorhinus canicula were placed as sister taxa to the Isospora, Caryospora and Schellakia group. Additionally, others from Pagrus caeruleostictus and Solea senegalensis belonged to an unknown apicomplexan group previously found in the Caribbean Sea, where it was sequenced from the water column, corals, and fish. Four distinct parasite lineages were found infecting farmed Dicentrarchus labrax or Sparus aurata. One of the lineages from farmed D. labrax was also found infecting wild counterparts, and another was also recovered from farmed S. aurata and farm-associated Diplodus sargus. CONCLUSIONS: Our results show that marine fish apicomplexans are diverse, and we highlight the need for a more extensive assessment of parasite diversity in this phylum. Additionally, parasites recovered from S. canicula were recovered as basal to their piscine counterparts reflecting hosts phylogeny.


Assuntos
Apicomplexa/classificação , Apicomplexa/isolamento & purificação , Organismos Aquáticos/classificação , Organismos Aquáticos/isolamento & purificação , Biodiversidade , Doenças dos Peixes/parasitologia , Infecções Protozoárias em Animais/parasitologia , Animais , Apicomplexa/genética , Organismos Aquáticos/genética , Oceano Atlântico , Peixes , Variação Genética
13.
Protist ; 168(5): 636-648, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29017074

RESUMO

Coccidian parasites of the genus Aggregata are known to parasitize cephalopods as definitive hosts, however one of the genus members, A. octopiana, has shown an unresolved phylogeny within the same definitive host, the common octopus (Octopus vulgaris). Our study represents a large-scale investigation aimed at characterizing morphological traits and phylogeny of A. octopiana isolated from O. vulgaris inhabiting three distinct geographic areas of the central Mediterranean: The Adriatic, Ionian and Tyrrhenian Seas. The morphology of sporogonic stages of the parasite in octopus tissues was assessed by light and electron microscopy; molecular characterization has been carried out using the 18S rRNA locus. Our results support the hypothesis that two morphologically and genetically different A. octopiana infect O. vulgaris in the investigated areas of the Mediterranean Sea. Additional nuclear and mitochondrial markers for Aggregata should provide further information and better resolution of its phylogeny.


Assuntos
Eucoccidiida , Octopodiformes/parasitologia , Filogenia , Animais , Eucoccidiida/classificação , Eucoccidiida/genética , Eucoccidiida/ultraestrutura , Haplótipos , Mar Mediterrâneo , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , RNA de Protozoário/genética , RNA Ribossômico 18S/genética , Especificidade da Espécie
14.
Front Physiol ; 8: 292, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28559849

RESUMO

The common octopus, Octopus vulgaris, is a good candidate for aquaculture but a sustainable production is still unviable due to an almost total mortality during the paralarvae stage. DNA methylation regulates gene expression in the eukaryotic genome, and has been shown to exhibit plasticity throughout O. vulgaris life cycle, changing profiles from paralarvae to adult stages. This pattern of methylation could be sensitive to small alterations in nutritional and environmental conditions during the species early development, thus impacting on its health, growth and survival. In this sense, a full understanding of the epigenetic mechanisms operating during O. vulgaris development would contribute to optimizing the culture conditions for this species. Paralarvae of O. vulgaris were cultured over 28 days post-hatching (dph) using two different Artemia sp. based diets: control and a long chain polyunsaturated fatty acids (LC-PUFA) enriched diet. The effect of the diets on the paralarvae DNA global methylation was analyzed by Methyl-Sensitive Amplification Polymorphism (MSAP) and global 5-methylcytosine enzyme-linked immunosorbent assay (ELISA) approaches. The analysis of different methylation states over the time revealed a global demethylation phenomena occurring along O. vulgaris early development being directly driven by the age of the paralarvae. A gradual decline in methylated loci (hemimethylated, internal cytosine methylated, and hypermethylated) parallel to a progressive gain in non-methylated (NMT) loci toward the later sampling points was verified regardless of the diet provided and demonstrate a pre-established and well-defined demethylation program during its early development, involving a 20% of the MSAP loci. In addition, a differential behavior between diets was also observed at 20 dph, with a LC-PUFA supplementation effect over the methylation profiles. The present results show significant differences on the paralarvae methylation profiles during its development and a diet effect on these changes. It is characterized by a process of demethylation of the genome at the paralarvae stage and the influence of diet to favor this methylation loss.

15.
Lab Anim ; 49(2 Suppl): 1-90, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26354955

RESUMO

This paper is the result of an international initiative and is a first attempt to develop guidelines for the care and welfare of cephalopods (i.e. nautilus, cuttlefish, squid and octopus) following the inclusion of this Class of ∼700 known living invertebrate species in Directive 2010/63/EU. It aims to provide information for investigators, animal care committees, facility managers and animal care staff which will assist in improving both the care given to cephalopods, and the manner in which experimental procedures are carried out. Topics covered include: implications of the Directive for cephalopod research; project application requirements and the authorisation process; the application of the 3Rs principles; the need for harm-benefit assessment and severity classification. Guidelines and species-specific requirements are provided on: i. supply, capture and transport; ii. environmental characteristics and design of facilities (e.g. water quality control, lighting requirements, vibration/noise sensitivity); iii. accommodation and care (including tank design), animal handling, feeding and environmental enrichment; iv. assessment of health and welfare (e.g. monitoring biomarkers, physical and behavioural signs); v. approaches to severity assessment; vi. disease (causes, prevention and treatment); vii. scientific procedures, general anaesthesia and analgesia, methods of humane killing and confirmation of death. Sections covering risk assessment for operators and education and training requirements for carers, researchers and veterinarians are also included. Detailed aspects of care and welfare requirements for the main laboratory species currently used are summarised in Appendices. Knowledge gaps are highlighted to prompt research to enhance the evidence base for future revision of these guidelines.


Assuntos
Comitês de Cuidado Animal/organização & administração , Criação de Animais Domésticos/métodos , Bem-Estar do Animal/normas , Projetos de Pesquisa/legislação & jurisprudência , Médicos Veterinários/legislação & jurisprudência , Animais , Cefalópodes , Consenso , União Europeia , Estados Unidos
16.
PLoS One ; 9(10): e107873, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25329466

RESUMO

BACKGROUND: Octopus vulgaris is a highly valuable species of great commercial interest and excellent candidate for aquaculture diversification; however, the octopus' well-being is impaired by pathogens, of which the gastrointestinal coccidian parasite Aggregata octopiana is one of the most important. The knowledge of the molecular mechanisms of the immune response in cephalopods, especially in octopus is scarce. The transcriptome of the hemocytes of O. vulgaris was de novo sequenced using the high-throughput paired-end Illumina technology to identify genes involved in immune defense and to understand the molecular basis of octopus tolerance/resistance to coccidiosis. RESULTS: A bi-directional mRNA library was constructed from hemocytes of two groups of octopus according to the infection by A. octopiana, sick octopus, suffering coccidiosis, and healthy octopus, and reads were de novo assembled together. The differential expression of transcripts was analysed using the general assembly as a reference for mapping the reads from each condition. After sequencing, a total of 75,571,280 high quality reads were obtained from the sick octopus group and 74,731,646 from the healthy group. The general transcriptome of the O. vulgaris hemocytes was assembled in 254,506 contigs. A total of 48,225 contigs were successfully identified, and 538 transcripts exhibited differential expression between groups of infection. The general transcriptome revealed genes involved in pathways like NF-kB, TLR and Complement. Differential expression of TLR-2, PGRP, C1q and PRDX genes due to infection was validated using RT-qPCR. In sick octopuses, only TLR-2 was up-regulated in hemocytes, but all of them were up-regulated in caecum and gills. CONCLUSION: The transcriptome reported here de novo establishes the first molecular clues to understand how the octopus immune system works and interacts with a highly pathogenic coccidian. The data provided here will contribute to identification of biomarkers for octopus resistance against pathogens, which could improve octopus farming in the near future.


Assuntos
Apicomplexa/fisiologia , Trato Gastrointestinal/parasitologia , Perfilação da Expressão Gênica , Hemócitos/metabolismo , Octopodiformes/genética , Infecções por Protozoários/genética , Análise de Sequência de RNA , Animais , Ontologia Genética , Imunidade Celular/genética , Anotação de Sequência Molecular , Octopodiformes/citologia , Octopodiformes/imunologia , Octopodiformes/parasitologia , Infecções por Protozoários/imunologia , Infecções por Protozoários/patologia , Transdução de Sinais/genética
17.
Front Physiol ; 5: 62, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24605101

RESUMO

DNA methylation is a common regulator of gene expression and development in mammalian and other vertebrate genomes. DNA methylation has been studied so far in a few bivalve mollusk species, finding a wide spectrum of levels. We focused our study in the common octopus, Octopus vulgaris, an important organism for neuroscience, physiology and ethology research as well as for human consumption. We aim to confirm the existence of DNA methylation in O. vulgaris and ultimately, if methylation plays a role in gene regulation during octopus development. We used a genome-wide approach, methylation-sensitive amplified polymorphism (MSAP), firstly in four different tissues from the same specimens from adult benthonic individuals to test whether gene expression is regulated by methylation. Secondly, we tested the hypothesis that methylation underlies development by assessing MSAP patters from paralarvae to adult developmental stages. Our data indicate that octopus genome is widely methylated since clear differences can be observed, and the methylation pattern changes with the development. The statistical analyses showed significant differences in methylation pattern between paralarvae, where higher internal cytosine methylation is observed, and the three other post-hatching stages. This suggests an important role of cytosine methylation during the first step of development, when major morphological changes take place. However, methylation seems to have little effect on gene expression during the benthonic phase, since no significant effect was revealed in the analyses of molecular variance (AMOVA) performed. Our observations highlight the importance of epigenetic mechanisms in the first developmental steps of the common octopus and opens new perspectives to overcome high mortality rate during paralarvae growth. Thus, better understanding the molecular regulation patterns could lead to new approaches that increase the efficiency of husbandry of this emergent species for aquaculture.

18.
Invert Neurosci ; 14(1): 13-36, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24385049

RESUMO

Cephalopods have been utilised in neuroscience research for more than 100 years particularly because of their phenotypic plasticity, complex and centralised nervous system, tractability for studies of learning and cellular mechanisms of memory (e.g. long-term potentiation) and anatomical features facilitating physiological studies (e.g. squid giant axon and synapse). On 1 January 2013, research using any of the about 700 extant species of "live cephalopods" became regulated within the European Union by Directive 2010/63/EU on the "Protection of Animals used for Scientific Purposes", giving cephalopods the same EU legal protection as previously afforded only to vertebrates. The Directive has a number of implications, particularly for neuroscience research. These include: (1) projects will need justification, authorisation from local competent authorities, and be subject to review including a harm-benefit assessment and adherence to the 3Rs principles (Replacement, Refinement and Reduction). (2) To support project evaluation and compliance with the new EU law, guidelines specific to cephalopods will need to be developed, covering capture, transport, handling, housing, care, maintenance, health monitoring, humane anaesthesia, analgesia and euthanasia. (3) Objective criteria need to be developed to identify signs of pain, suffering, distress and lasting harm particularly in the context of their induction by an experimental procedure. Despite diversity of views existing on some of these topics, this paper reviews the above topics and describes the approaches being taken by the cephalopod research community (represented by the authorship) to produce "guidelines" and the potential contribution of neuroscience research to cephalopod welfare.


Assuntos
Experimentação Animal/normas , Bem-Estar do Animal/normas , Cefalópodes , Neurociências/normas , Animais , União Europeia , Guias como Assunto
19.
J Proteomics ; 105: 151-63, 2014 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-24370682

RESUMO

The immune system of cephalopods is poorly known to date. The lack of genomic information makes difficult to understand vital processes like immune defense mechanisms and their interaction with pathogens at molecular level. The common octopus Octopus vulgaris has a high economic relevance and potential for aquaculture. However, disease outbreaks provoke serious reductions in production with potentially severe economic losses. In this study, a proteomic approach is used to analyze the immune response of O. vulgaris against the coccidia Aggregata octopiana, a gastrointestinal parasite which impairs the cephalopod nutritional status. The hemocytes and plasma proteomes were compared by 2-DE between sick and healthy octopus. The identities of 12 differentially expressed spots and other 27 spots without significant alteration from hemocytes, and 5 spots from plasma, were determined by mass spectrometry analysis aided by a six reading-frame translation of an octopus hemocyte RNA-seq database and also public databases. Principal component analysis pointed to 7 proteins from hemocytes as the major contributors to the overall difference between levels of infection and so could be considered as potential biomarkers. Particularly, filamin, fascin and peroxiredoxin are highlighted because of their implication in octopus immune defense activity. From the octopus plasma, hemocyanin was identified. This work represents a first step forward in order to characterize the protein profile of O. vulgaris hemolymph, providing important information for subsequent studies of the octopus immune system at molecular level and also to the understanding of the basis of octopus tolerance-resistance to A. octopiana. BIOLOGICAL SIGNIFICANCE: The immune system of cephalopods is poorly known to date. The lack of genomic information makes difficult to understand vital processes like immune defense mechanisms and their interaction with pathogens at molecular level. The study herein presented is focused to the comprehension of the octopus immune defense against a parasite infection. Particularly, it is centered in the host-parasite relationship developed between the octopus and the protozoan A. octopiana, which induces severe gastrointestinal injuries in octopus that produce a malabsorption syndrome. The common octopus is a commercially important species with a high potential for aquaculture in semi-open systems, and this pathology reduces the condition of the octopus populations on-growing in open-water systems resulting in important economical loses. This is the first proteomic approach developed on this host-parasite relationship, and therefore, the contribution of this work goes from i) ecological, since this particular relationship is tending to be established as a model of host-parasite interaction in natural populations; ii) evolutionary, due to the characterization of immune molecules that could contribute to understand the functioning of the immune defense in these highly evolved mollusks; and iii) to economical view. The results of this study provide an overview of the octopus hemolymph proteome. Furthermore, proteins influenced by the level of infection and implicated in the octopus cellular response are also showed. Consequently, a set of biomarkers for disease resistance is suggested for further research that could be valuable for the improvement of the octopus culture, taken into account their high economical value, the declining of landings and the need for the diversification of reared species in order to ensure the growth of the aquaculture activity. Although cephalopods are model species for biomedical studies and possess potential in aquaculture, their genomes have not been sequenced yet, which limits the application of genomic data to research important biological processes. Similarly, the octopus proteome, like other non-model organisms, is poorly represented in public databases. Most of the proteins were identified from an octopus' hemocyte RNA-seq database that we have performed, which will be the object of another manuscript in preparation. Therefore, the need to increase molecular data from non-model organisms is herein highlighted. Particularly, here is encouraged to expand the knowledge of the genomic of cephalopods in order to increase successful protein identifications. This article is part of a Special Issue entitled: Proteomics of non-model organisms.


Assuntos
Coccídios , Coccidiose/metabolismo , Hemolinfa/metabolismo , Octopodiformes , Proteoma/metabolismo , Proteômica/métodos , Animais , Coccidiose/veterinária , Hemolinfa/parasitologia , Octopodiformes/metabolismo , Octopodiformes/parasitologia
20.
Eur J Protistol ; 49(3): 373-80, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23498588

RESUMO

The coccidia genus Aggregata is responsible for intestinal coccidiosis in wild and cultivated cephalopods. Two coccidia species, Aggregata octopiana, (infecting the common octopus Octopus vulgaris), and A. eberthi, (infecting the cuttlefish Sepia officinalis), are identified in European waters. Extensive investigation of their morphology resulted in a redescription of A. octopiana in octopuses from the NE Atlantic Coast (NW Spain) thus clarifying confusing descriptions recorded in the past. The present study sequenced the 18S rRNA gene in A. octopiana and A. eberthi from the NE Atlantic coast in order to assess their taxonomic and phylogenetic status. Phylogenetic analyses revealed conspecific genetic differences (2.5%) in 18S rRNA sequences between A. eberthi from the Ria of Vigo (NW Spain) and the Adriatic Sea. Larger congeneric differences (15.9%) were observed between A. octopiana samples from the same two areas, which suggest the existence of two species. Based on previous morphological evidence, host specificity data, and new molecular phylogenetic analyses, we suggest that A. octopiana from the Ria of Vigo is the valid type species.


Assuntos
Coccídios/classificação , Coccídios/genética , Animais , Análise por Conglomerados , Coccídios/isolamento & purificação , DNA de Protozoário/química , DNA de Protozoário/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Genes de RNAr , Dados de Sequência Molecular , Octopodiformes/parasitologia , Filogenia , RNA de Protozoário/genética , RNA Ribossômico 18S/genética , Análise de Sequência de DNA , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...